

Subject Code: KM						E301							
Roll No:													

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTION	ON-A Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a) I	Differentiate microscopic and macroscopic point of view.		1
Q1(b) I	Define the quasi static process?		1
Q1(c) I	Define the second law efficiency and why PMM-II is not possible	.	2
Q1(d) I	Distinguish between high grade energy and low-grade energy?		2
Q1(e) I	Explain the Joule-Thompson coefficient and Inversion curve?		3
Q1(f) I	Discuss the triple point and critical point.		4
Q1(g) I	Define the refrigeration effect and how it can be improved?		5
Q1(h) I	Explain the dryness fraction and how it can be improved?		4
Q1(i) H	How the C.O.P of the vapor compression cycle can be improved?		5
Q1(j) I	Differentiate between available and unavailable energy?		3

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
	certain noz the discha negligible (i) Find the (ii) If the in flow rate.	s a device for increasing the velocity of a steadily flowing state, the enthalpy of the fluid passing is 3000 kJ/kg and the rge end, the enthalpy is 2762 kJ/kg. The nozzle is heat loss from it. Evelocity at exists from the nozzle. Inlet area is 0.1 m2 and the specific volume at inlet is 0.18	e velocity is 60 m/s. At orizontal and there is 7 m3/kg, find the mass	
Q2(b)	heat to a re in heat from engine also 5°C reserve (i) The rate	np working on the Carnot cycle takes in heat from a reservoir at 60°C. The heat pump is driven by a reversible he is a reservoir at 840°C and rejects heat to a reservoir at 60°C odrives a machine that absorbs 30 kW. If the heat pump expoir, determine to of heat supply from the 840°C source to of heat rejection to the 60°C sink.	eat engine which takes C. The reversible heat	2
Q2(c)		n the first and second T-dS equations and derive the expreacities of and Cv	ssion for the difference	3
Q2(d)	Define in p Critical Po	oure substance by suitable phase change diagram the term (int (iii) Saturation states (iv) Sub cooled state (v) Superhea	ted vapour state.	4
Q2(e)	The atmost compressor pressure of same. It is passed to the (i) The work (ii) C.O.F. For air ass law for compressor to the compressor to t	cheric air pressure 1 bar and temperature -5° C is drawn in a rof Bell Coleman refrigerating machine. It is compressed in 5 bar. In the cooler the compressed air is cooled to 15° C, then expanded to a pressure of 1 bar in an expansion cylindrae cold chamber. Calculate ork done per kg of air of the plant the law for expansion PV ^{1.2} =Constant: compression is PV ^{1.4} =Constant eat of the air at constant pressure is 1 KJ/Kg-K	the cylinder of the sentropically to a pressure remaining the	5

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a) The inter u=3.56 p A system and a vo	hal energy of a certain substance is given by the following $y + 84$, where u is given in KJ/Kg, P is in KPa and v is in composed of 3 kg of this substance expands from an initiation of 0.22 m ³ to a final pressure 100 KPa in a process re related by	equation m³/kg tial pressure of 500 KPa	1

					P	rinte	d Pa	ge: 2	2 of 2	,
				S	ubje	ct C	ode:	KM	E301	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

	i. ii.	If the expansion is quasi static find Q,ΔU and W for the process In another process the same expands according to the same pressure –volume relationship as in part (i) and from the same initial state to the same final state as in part (i), but the heat transfer in this case is 30 KJ. Find the work transfer for this process.			
	iii.	Explain the difference in work transfer in parts (i) and (ii)			
Q3(b)	For a s	ample of air having 22 ⁰ DBT, relative humidity 30 % at barometric pressure of 760	4		
	mm of Hg calculate (i) Vapour pressure				
	(ii) Humidity ratio. (iii) Vapour density and (iv) Enthalpy				
	Verif	y yours results by psychometric chart.			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO		
		20 bar 360^{0} C is expanded in a steam turbine to 0.0				
	condenser, where it is condensed to a saturated liquid water. The pump feeds back the water					
	in to the b	oiler (i) Assuming ideal processes, find the per kg of ste	eams of the network and			
	the cycle of	efficiency (ii) If the turbine and the pump have each 8	30% efficiency, find the			
	percentage	reduction in the network and cycle efficiency.				
Q4(b)	Prove that			3		
	$C_P - C_v = -7$	$\Gamma(\partial V/\partial T)^2_{p}(\partial P/\partial V)_{T}$	_() '			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1 X10=10)	CO
Q5(a)	State the	Clapeyron equation and discuss its importance during	phase change of pure	3
	substance.	Derive the equation for Clausius-Clapeyron equation for e	evaporation of liquids.	
Q5(b)	A vapour c	compression refrigeration system uses R-12 refrigerant, an	d the liquid evaporates	5
	in the evap	porator at -15° C. The Temperature of this refrigerant at the	e delivery from the	
	compresso	r is 15 °C when the vapour is condensed at 10°C. Find the	coefficient of	
	performan	ce (i) If there is no under cooling and (ii) the liquid is cool	ed by 5°C before	
	expansion	by throttling.		
		ELOI		

SECTION-C	Attempt ANN ONE following Question	Marks (1X10=10)	CO
	nt diagram Cithium bromide water absorption system an	d explain its working.	5
List the ma	jor field or applications of this system.		
Q6(b) (i) One kg	of water at 273 K is brought in to contact with a heat rese	ervoir at 373 K When the	2
water has a	reached 373 K, find the entropy change of the water of t	the heat reservoir and of	
the univers	e		
(ii) If the w	rater is heated from 273 K to 373 K by firs bringing		
It in conta	ect with a reservoir at 323 K and then with a reservoir at 3	73 K, what will the	
opy change	e of the universe be?		
(iii) Explain	n how water might be heated from 273 to 373 K with alm	ost no change in the	
opy of the	universe.		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q7(a)	A gas un	dergoes a thermodynamic cycle consisting of the following		1	
	(i)	Process 1-2 is isochoric heat addition of 325.235 KJ/kg			
	(ii)	Process 2-3 adiabatic expansion to its original pressure with	loss of 70 KJ/kg in		
	internal energy				
	(iii)	Process 3-1 isobaric compression to its original volume wit	h heat rejection of 200		
		KJ/kg			
		Prepare a balance sheet of energy quantities and find the ov	erall changes during the		
		cycle			
Q7(b)	Show th	at the Kelvin-Planck and the Clausius statement of the seco	nd law of	2	
	thermod	ynamics are equivalent.			